Methods for Construction of *ab initio*Potential Energy Surfaces (PESs) Describing Large Amplitude Motion

Richard Dawes and Ahren W. Jasper Combustion Research Facility-Sandia National Laboratories

2009 Symposium on Chemical Physics at the University of Waterloo

Fitted Potential Energy Surfaces (PESs) via interpolation of *ab initio* data

 Fitting methods are based on local Interpolative Moving Least Squares (L-IMLS)

JCP **130** 144107 (2009), JPC A **113**(16) 4626 (2009), JPC A **113**(16) 4709 (2009), JCP **128** 084107 (2008)

- Interpolation between a number of stored local basis expansions
- Provides automated fitting. Runs in parallel on a computer cluster interfaced with popular electronic structure codes, adding data at automatically determined locations designed to rapidly converge the fit.
- Interpolates through data points making fit systematically improvable and ensuring correct degeneracy patterns on fitted PESs for multiple surfaces.

IMLS

- Fit passes through data
- Much more flexible than a single expansion using the same basis
- Apply weights to robust linear algebra least squares solvers (e.g. LAPACK)

Automatic PES generation: 5 seed points

Automatic PES generation: 5 seed points + 1 automatically generated point

Automatic PES generation: 5 seed points + 2 automatically generated points

Automatic PES generation: 5 seed points + 3 automatically generated points

Density adaptive weight function

$$w_i(Z) = e^{\left(\frac{z-z_i}{d(i)}\right)^2} / \left(\left(\frac{z-z_i}{d(i)}\right)^{2p} + \varepsilon\right)$$

Essential Components of IMLS-based Methods

- Choice of coordinates to describe system
- Fitting basis
- Well-defined distance metric between stored expansion points
- Interpolative weight function

Applications to three-atom systems

- Small 3-D configuration space
 - Coordinates and basis less important
 - o Coordinates: valence, Jacobi, Radau or internuclear distances
 - Basis: expansion-centered polynomial in choice of coordinates
 - Simple distance metric
 - Generalized distance using differences in coordinates
- Extremely accurate and efficient fits obtained if ab initio method is "well-behaved"
 - Only a few hundred points are typically required to achieve wavenumber accurate fits for simple topologies
 - Allows direct evaluation of ab initio methods for prediction of spectroscopic levels
- O CH₂ and HCN (JPC A **113**(16) 4709 (2009))
 - CCSD(T)/CBS, MRCI+Q/CBS+C-V+rel.+NBO...
 - 2-3 cm⁻¹ RMSE over large sets of expt. levels

Dynamically-weighted state-averaged multireference electronic structure theory

$$E^{SA-MCSCF} = \sum_{i=0}^{n} w_i E_i \qquad E^{DW-MCSCF} = \sum_{i=0}^{n} w_i (E_i - E_0) E_i$$

$$E^{GDW-MCSCF} = \sum_{i=0}^{n} w_i (|E_i - E_j|) E_i$$

- Low-lying state(s)
- Good agreement with expt. (~10 cm⁻¹)
- o Problems near CI
- Not a challenging test for GDW

M.P. Deskevich, D.J. Nesbitt and H-J. Werner, JCP 120 7281 (2004)

\widetilde{B} (1A') state of CDF

- Excellent test system for GDW scheme
- ○High-lying isolated state (31000 cm⁻¹)
- Well characterized spectroscopically
- ○2¹A' state of interest (red)
- ○1¹A' and 3¹A' states (black)
- o1¹A" and 2¹A" states (blue)
- Degeneracies at 180 degrees and related RT-coupling

\widetilde{B} (1A') state of CDF

- Ground state: maximum probability in theta not quite at 0 degrees (linear)
- Barrier to linearity = 473 cm⁻¹
- ZPE(CDF) = 2275 cm⁻¹

\widetilde{B} (1A') state of CDF

$\stackrel{\sim}{B}$ (1A') state of CDF

Level	EXPT (width)	GDW-MRCI/CBS	Error
$(0,0^0,0)$	30782.4 (0.3)		
$(0,2^0,0)$	904.5 (0.3)	900.9	-3.6
$(0,4^0,0)$	1944.1 (1.1)	1930.5	-13.7
$(0,6^0,0)$	3049.9 (2.6)	3037.1	-12.8
$(0,8^0,0)$	4172.0 (3.7)	4155.2	-16.9
$(0,10^0,0)$	5298.9 (4.3)	5313.2	14.3
$(0,0^0,1)$	1292.4 (0.3)	1287.4	-5.0
$(0,2^0,1)$	2182.7 (0.5)	2197.8	15.1
$(0,4^0,1)$	3250.5 (1.6)	3244.1	-6.4
$(0,6^0,1)$	4365.1 (3.6)	4358.7	-6.4
$(0,8^0,1)$	5483.4 (5.0)	5483.7	0.4
$(0,10^0,1)$	6605.7 (5.1)	6617.0	11.3
$(0,2^0,2)$	3337.2 (0.8)	3335.8	-1.4
$(0,4^0,2)$	4549.4 (4.3)	4553.2	3.8
$(1,2^0,0)$	3316.5 (0.9)	3334.1	17.6
$(1,4^0,0)$	4344.3 (3.1)	4347.5	3.2
MUSE			8.54

Treating large amplitude motion

- Long range PESs with large amplitude motion
 - o E.g. vdW or roaming molecular fragment systems
- ○6-D large configuration space describes two general rigid fragments (4-D for two linear fragments)
- Orientational dependence is challenging for internuclear distance coordinates
- Relatively straightforward ab initio
- Develop specialized IMLS-based scheme considering three main components
 - Coordinates
 - o**Basis**
 - oDistance Metric

Coordinates

CH₃ + HCO

 $CH_3 + H_3CO$

NNO + NNO

- o 6-D: center of mass distance, 5 Euler angles \circ V(r, γ_1 , cos(β_1), γ_2 , cos(β_2), α_1 - α_2)
- o 4-D: center of mass distance, 2 angles and 1 torsion \circ V(r, cos(θ_1), cos(θ_2), φ)

Basis

- o Angles: Real rotation matrices based on Wigner rotation functions $R_{m',m}^{l}(\alpha,\beta,\gamma)$
- \circ Distance: $\exp(\alpha r)$
- 6-D basis:

$$\sum_{i} \exp(\alpha r)^{i} \sum_{L_{1}, L_{2}=0}^{L_{\max}} \sum_{M=0}^{\min(L_{1}, L_{2})} \sum_{K_{1}=-L_{1}}^{L_{1}} \sum_{K_{2}=-L_{2}}^{L_{2}} R_{M, K_{1}}^{L_{1}}(0, \beta_{1}, \gamma_{1}) R_{-M, K_{2}}^{L_{2}}(-\alpha_{1-2}, \beta_{2}, \gamma_{2})$$

○ 4-D basis:

$$\sum_{i} \exp(\alpha r)^{i} \sum_{L_{1}, L_{2}=0}^{L \max} \sum_{(L_{1}+L_{2} \leq L \max)}^{\min(L_{1},L_{2})} \sum_{M=0}^{\min(L_{1},L_{2})} P_{L_{1}}^{M}(\cos(\theta_{1})) P_{L_{2}}^{M}(\cos(\theta_{2})) \cos(M\phi)$$

Basis: dynamic conditioning

- Strategy to optimize fitting basis dynamically throughout configuration space
- SVD-based least squares solver
 - Near singular weight at data point to force interpolation
 - Large singular values correspond to well-determined linear combinations of the basis
 - Near-zero singular values correspond to poorly determined linear combinations of the basis
- Exclude linear combinations of basis (set condition number) until fit to neighbors is compromised >10%
- Improves fitting error to separate test set by > 30%
- Allows large general (even under-determined) basis

Distance metric

4 required properties

$$\circ$$
d(x,y)≥0

$$\circ d(x,y)=0$$
 iff $x=y$

$$\circ d(x,y)=d(y,x)$$

$$\circ d(x,z) \le d(x,y) + d(y,z)$$

0 4-D:
$$d(x_1,x_2)^2=c(r_1-r_2)^2+(\theta_{11}-\theta_{12})^2+(\theta_{21}-\theta_{22})^2+$$
 sqrt(sin(θ₁₁)sin(θ₁₂)sin(θ₂₁)sin(θ₂₂))(φ₁-φ₂)²

o6-D: Use Eckart-Sayvetz conditions to align Eckart frames of two structures (equivalent to minimizing sum of squared (mass-weighted) displacements)

$$\sum_{i=1}^{N} m_i \mathbf{r}_i' \times (\mathbf{U} \mathbf{r}_i) = 0 \qquad \qquad \min_{U \in SO(3)} \sum_{i=1}^{N} m_i |\mathbf{r}_i' - (\mathbf{U} \mathbf{r}_i)|^2$$

Applications: (NNO)₂

- Ab initio: CCSD(T), 44 electrons, no symmetry (in general)
 - G. Petersson, nZaP extrapolation bases
 - "Schwenke parameterize" CBS(2ZaP, 3ZaP)
 - Test estimated CBS at 5 points
 - Compare CP corrected
 - Simple 3ZaP more accurate than any 2-3 extrapolation scheme for 5 test points (3-4 CBS CP corrected most accurate 4-zeta scheme)
- o Fit PES (10600 cm⁻¹ range) to 1-2 cm⁻¹ RMSE using <1600 single point energies</p>
- An effective Imax of 30 was achieved using local expansions with Imax of only 6

Applications: (NNO)₂

 Detailed PES characterization and analysis of rovibrational calculations underway

Applications: Roaming radicals

- Acetaldehyde system previously fit by L. Harding using 8 internuclear-distance Morse-function expansions, switching functions and 103,000 ab initio points (CASPT2/avdz)
- Comparable quality of fit obtained with IMLS scheme using ~2000 ab initio points (energies and gradients)
- Application to series of related systems underway

Applications: Roaming radicals

 Association kinetics on fitted surfaces (~2000 data points) agree with those computed using direct dynamics (~40000 ab initio calculations required)

Summary

- IMLS scheme straightforward for high-accuracy in three atom systems
- Accurate and efficient representations of PESs for large configuration spaces require specialized:
 - Coordinates
 - Bases
 - Distance metrics
- Small number of ab initio data required enables rapid construction of PESs and/or the use of highlevel electronic structure theory

Acknowledgements

- Collaborators
 - Ro-vibrational calculations
 - Xiao-Gang Wang and Tucker Carrington Jr.
 (Queen's University)
 - Experimental spectroscopy (CHF)
 - Scott A. Reid (Marquette University)
 - Roaming radicals
 - Lawrence B. Harding and Stephen J. Klippenstein (Argonne National Labs)
 - IMLS fitting
 - Donald L. Thompson (Missouri) and Albert F.
 Wagner (Argonne)
- oFunding
 - OBES DOE

